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Abstract. A regressive function (also called a regression or contractwe mapping) on a partial order 
P is a function (T mapping P to itself such that o(x) < x. A monotone k-chain for CJ is a k-chain on 
which u is order-preserving; i.e., a chain x1 < ... <XL such that a(.~, ) d ... < a(xk). Let P,be the poset 
of integer intervals {i, i + 1, , m} contained in { 1,2, . . . . n}, ordered by inclusion. Let f(k) be the 
least value of n such that every regression on P, has a monotone k+ l-chain, let t(x, j) be defined 
by t(x, O)= 1 and t(x,J)=X’(‘x’-I’. Then f(k) exists for all k (originally proved by D. White), and 
t(2,k)<f(k)<t(e+ek,k), where &k-+0 as k+m. Alternatively, the largest k such that every 
regression on P, is guaranteed to have a monotone k-chain lies between lg*(n) and lg*(n)- 2, 
inclusive, where lg*(n) is the number of applications of logarithm base 2 required to reduce n to a 
negative number. Analogous results hold for choice functions, which are regressions in which every 
element is mapped to a minimal element. 
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1. Introduction 

A regressive function (also called a regression or contractive mapping) on a 
partial order P is a function c mapping P to itself such that Q(X) 6 x. We con- 
sider conditions on P that force any regression on P to have a long chain on 
which it is order-preserving; i.e., a chain x1 < ...xk such that a(~,) < . . .6 o(x~). 
Such a chain is called a monotone k-chain. In discussing lattices, we delete 
the unique minimal element from consideration. 

This problem is Ramsey-theoretic, in that an arbitrary regression on P is 
analogous to a coloring, and we ask for a sub-coloring having additional struc- 
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ture. Hence it is not surprising that for various classes of posets, sufficient size 
forces a monotone k-chain in any regression. For example, in [lo] we showed 
that this holds for any poset of width w that has at least (w + 1)“- ’ elements. 

The question has also been studied for Boolean algebras and other well- 
behaved families of lattices. The arguments that have guaranteed monotone 
chains in these well-behaved families in fact guaranteed monotone chains with 
special additional properties. In the terminology of Harzheim [2], they guarantee 
aJix chain (0(x,) = x, for 1 d i < k), a constant chain (0(x,) = y for 1 < id k), or 
a regressive chain (a(~,) = x,~ i for 2 -G i 6 k). Voigt [9] defined a class L of 
ranked posets to have the regressive chain property if for every k there exists 
n such that every regression on every poset in L with rank at least n has a fix, 
monotone, or constant chain. Harzheim [2, 31 proved that Boolean algebras 
have the regressive chain property, generalizing results of Harzheim [l], Rado 
[8], and Leeb [6]. Voigt [9] proved a further generalization to classes L satisfying 
a Ramsey-theoretic property. As applications, he showed that Boolean algebras, 
partition lattices, and subspace lattices have the regressive chain property. 

‘Authors have also considered a restricted class of regressions, called choice 
functions, in which a(x) is a minimal element for all x E P. Note that a mono- 
tone chain for a choice function is a constant chain. It is natural to ask how 
large must IZ be to guarantee monotone k-chains for arbitrary regressions or choice 
functions. Most of the results mentioned above are non-constructive and give 
no such bounds. However, the exact value is known for choice functions on 
Boolean algebras. Perry [7] proved that the minimum IZ such that every choice 
function on the non-empty subsets of { 1, . . . , n> has a constant k-chain is 
n = 2“- ‘. (Harzheim [l] gave the lower bound, and Kleitman and Lewin [4] 
gave another proof.) 

In this paper we study regressions on special subposets of the Boolean 
algebras. Let P, be the poset of integer intervals {i, i + 1, . . . , j} contained in 
0, . . . . n}, ordered by inclusion; Ix] denotes the size of an interval XE P,,. Let 
f(k) be the least value of n such that every regression on P,, has a monotone 
k + l-chain. We show that t(2, k) < f(k) < t(e + ek, k), where EL + 0 and t(x, j) 
is defined by t(x, 0) = 1 and t(x, j) = x’(-‘+I). More precisely, f(k) < t(e + E, k) 
for any fixed E > 0 as long as k is sufficiently large. In fact, since .f(l) = 2 and 
f(2) = 8, it is likely that f(k) < t(e + ek, k) with sk < 0 for all k > 0, but we 
prove only that there exists a decreasing sequence .sk with si = 1, for example. 
We refer to such a fixed sequence henceforth whenever we write t(e + &h, k). 
Our actual upper bound is exponentially recursive, and t(e + ck, k) is an upper 
bound on the solution to the recurrence. As in the earlier investigations, we can 
guarantee monotone k-chains of a special form. An interlaced monotone k-chain 
for D is a monotone k-chain x1 < ... < xk such that for every i < k either cr(x,+ )) b 
x, or 0(x,+ i) = 0(x,). For n > t(e + EL, k), every regression on P,, has an interlaced 
monotone k + l-chain, but there is a regression on PlC2,1il with no monotone 
k + 1 -chain of any kind. 
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Furthermore, let g(k) be the least value of n such that every choice function 
on P,, has a monotone k+ l-chain. We show that 2“ <g(k)< eL+‘13. The 
existence of f(k) and g(k) was originally proved by D. White [12] in proving 
Milner’s conjecture that regressions on the poset of all integer intervals have 
arbitrarily long monotone chains. His upper bound on g(k) is almost the same 
as ours, obtained before finding his paper. We include our proof because the 
argument generalizes to give a new upper bound on f(k). Our lower bounds are 
new and obtained by explicit constructions. They are not best possible, since 
they yield g(2) b 4 and f(2) b 6, but g(2) = 5 and f(2) = 8. 

To compare our bound on g(k) with [12], let H(n) = z:=, l/i. White showed 
that H(n)2 (k+ l)nl(n + 1) guarantees that every regression on P, has a 
monotone k-chain. We show that H(n) > (k + l)nl(n + 1) guarantees that every 
regression on P,, has a monotone k + l-chain - a very slight improvement. It 
is well-known (see [5, p. 741) that 

H(n)=lnn+y+ 1/2n- 1/12n’+...>lnn+y, 

where y= 0.57721... is Euler’s constant. Hence it suffices to have In n > k + 
1 - y, so that g(k) < e’+‘23. 

There is another way to interpret the bounds on f(k). We always have aX 
small enough so that f(k) < 4t(4, k). A short proof by induction shows that 
4t(4, k) < t(2, k + 2). (Equality holds for k = 0, and 

lg 4t(4, k) = 2 + 2t(4, k - 1) d 4t(4, k - 1) 6 t(2, k + 1) = lg 1(2, k + 2).) 

This allows us to answer, within an additive constant, the question of how 
large a monotone chain is forced in every regression on a particular P,,. The 
answer is between lg*(n) and lg*(n) - 2, where lg*(n) is the number of times 
the logarithm base 2 must be iterated to reduce n to a negative number. 

We present the upper bounds in Section 2 and lower bounds in Section 3. In 
Section 4, we mention several straightforward generalizations. 

2. Upper Bounds 

First we show that an upper bound on f(k) can be obtained from an upper 
bound on the function g. Then we obtain an upper bound for g. Finally the 
method used to do that extends to yield an upper bound for f directly. The 
upper bounds are obtained recursively and thus depend on the existence of 
f(0) and g(O), which both equal 1. The ideas in this lemma are similar to 
ideas used by White in proving Milner’s conjecture from the existence of g. 

LEMMA 1. Given the existence ofthefunction g, f(k) < g( 1 + kf(k - 1)). 
Proof: For k > 1, consider any arbitrary regression ~7 on P,, where n > 

g(l + kf(k- 1)). Define a choice function t on P, by letting r(x) be the largest 
value in a(x) (i.e., its right endpoint). By the choice of n, t is constant on a 
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chain C of at least 1 + kf(k - 1) elements. The images Y = {G(X) : x E C) lie 
on a single chain, since they are intervals with the same right endpoint. If 
Y has at most f(k - 1) distinct images, then the pigeonhole principle says that 
CJ is constant on a subchain C’ with more than k elements. If 1 Y 1 is larger, then 
we have some a(x) = y where y has size m > f(k - 1). The subintervals of y 
form a copy of P,, and 0 restricts to a regression on it. This restriction must 
have a monotone k-chain, and x can be added to the top to obtain a monotone 
k + 1 -chain under cr. 0 

The upper bound on g(k) is obtained by weighting the elements of P,l in such 
a way that the total weight grows faster than the number of minimal elements, 
and such that large weight mapped to a single element implies its pre-image 
contains a k + l-chain. As noted in the introduction, this theorem implies 
g(k) < ek+423. 

THEOREM 1. ZfH(n) > (k + l)nl(n + l), then every choice function on P, has 
a monotone k + I -chain. 

Proof: Assign to each element of size i in P,, a weight of l/i. Since P, has 
n + 1 - i elements of size i, the total weight in P, is (n + 1) H(n) - n, which 
under the hypothesis exceeds kn. Any choice function maps all of this weight 
to the n minimal elements, so some element y receives total weight exceeding 
k. To show that a-‘(y) contains a k + l-chain, we need only show that any 
antichain in a-‘(y) has total weight at most 1. 

Let U = {x E P,, : x 3 y}; note a-‘(y) c U. Furthermore, UC Q, where Q 
is the product of two chains. Extend the weighting to Q by giving weight l/i to 
all elements at the ith level (the minimal element y has weight 1). In Q, any 
antichain restricted to a single rank has total weight 1. For any other anti- 
chain in Q, replacing the elements appearing at the lowest level by those 
that directly cover them yields an antichain of larger weight, because the j 
elements of weight l/i are replaced by at least j+ 1 elements of weight ll(i + l), 
and (j+ l)l(i + 1) > j/i when j< i. Any antichain in Q can be pushed up to a 
single rank by this procedure, hence antichains in Q (and their restrictions 
to U) have weight at most 1. 0 

Using Lemma 1, this theorem yields the recursive upper bound f(k) 6 
e’.423+‘f(k- I). A close look at the proof of Lemma 1 suggests that it can be 
improved. Indeed, by applying the weighting technique directly to the regres- 
sion problem, we can replace the kf(k - 1) by 2::; f(i), which is much 
smaller. In addition, the monotone k + 1 -chain that we force when n is of the 
size has the nice structure defined in the introduction. The exponentiation 
causes this bound to grow so quickly that we can ignore the sum if we slightly 
increase the base. 
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then any regression rs on P, has an interlaced monotone k + 1 -chain. In partic- 
ular, f(k) < e423+z1<AJ‘(‘) < t(e + &h, k). 

Proof: Suppose /y/a f(i) and a-‘(y) contains a k - i-chain of elements 
larger than y. This chain can be placed at the top of the interlaced monotone 
i + 1 -chain guaranteed in the copy of PlYi generated by y to obtain a monotone 
k + I -chain for cr. This k + l-chain will be interlaced, since it will satisfy 
o(x~+,)=‘..=o(x1+2)~x~+I, and the interlacing condition is satisfied by 
hypothesis forj d i. 

With the weight function used earlier, again the weight of any antichain 
in a-‘(y) is at most 1. (In fact, the weight is at most (n - Iy( + 2)l(n + lyl), and 
this is attained only by intervals centered at n/2; to further improve the bound, 
subtract 1 from numerator and denominator for each unit of displacement of 
the interval from that center.) Avoiding an interlaced monotone k + l-chain 
thus limits the total weight in P,, . In particular, every y with f(i - 1) < 1 ~16 f(i) 
absorbs weight at most k - i. Equivalently, letting N, be the number of elements 
y E P,, with lyl d f(i), the bound on allowable weight is c,“=, Nk-, . To evaluate 
this sum, note that 

Hence when the total weight reaches nz::i f(i) - alto’ (‘y)), an interlaced 

monotone k + l-chain is forced. As before, the total weight in P,, is (n + 
l)H(n) - n. 

Replacing the upper bound by t(e + ek, k) is done inductively. We have 

f(k) g e 423+Zf,<l;f’W < e423+&<&-+&,,d <t(e+ch, k). 0 

3. Lower Bounds 

To describe the constructions used to obtain lower bounds, it is convenient 
to encode the elements of P, by their smallest element and size; {i, . . . , i +j - 1 > 
will be denoted (i,j). First we consider the problem of choice functions, where 
we write o(i,j) = r rather than a(i,j) = (r, 1). 

THEOREM 3. g(k) 2 2”. 
ProoJ We construct a choice function on Pzlipl with no monotone k + l- 

chain. We must define o so that the preimage of each minimal element y is 
the union of k antichains (y itself must be one of these). To this end we parti- 
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tion Pzh- i into k bands of consecutive complete levels and define c so that the 
elements of a single band that map to y form an antichain. 

Index the levels of P, by the size of the elements as integer intervals. Let the 
ith band consist of levels 2’-’ through 2’ - 1, for 1 d i 6 k. For r > 1, let 
~(r, s) = o(r - 1, s) + 1. If the images of {( 1, s)} are legally defined, this will yield 
a well-defined choice function on all of P2c i . In the ith band, we must define 
cr for (1,2’-‘), (1,2’-’ + l), . . . . (1,2’ - 1). Let the images, respectively, be the 
singletons 2’-’ 2’-’ - 1 1. Since 2 ‘- ’ E (1,2 ‘- ’ ), this defines a legal choice 
function; note ‘that the ikt’band is the bottom level, and these elements are 
fixed under 0. In general, the elements of the ith band that map to t are {(t + 
j-2’-‘,2’-‘+j- 1): 1 <j62’-‘}, where some ofthese do not eist if t<2’-’ 
or t > n - 2’ + 2. The construction works because this collection forms an anti- 
chain. This choice function is illustrated on the left in Figure 1 by labeling 
each point with the element chosen by C. cl 

15,3 

7,4 

.* . . . . . . . 

1,5 . . . 

2,s 3,s . . . 

8 9 . . . 3,5 4,; 5,5 . . . 

-_ --_- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 2 3 . . . 1,6 2,6 3,6 4,6 .e. 

2 3 4 5 . . . 

3 4 5 6 7 . . . 1,l 2,l 3,l 4,l 5,l . . . 

4 5 6 7 8 9 . . . 2,l 3,l 4,l 5,1 6,l 7,l . . . 

---------_ 3,l 4,l 5,l 6,l 7,l 8,l 9,l ..e 

12 3 4 5 6 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 3 4 5 6 7 8 9 . . . 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 . . . 

------------ 

123456789... 1,l 2,l 3,l 4,l 5,l 6,l 7,l 8,l 9,l . . . 
Fig. 1. A choice function and regression without long monotone chains. 
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The idea behind this construction also yields a construction for a general 
regression. It gives a lower bound on f(k) that is stronger than f(k) > t(2, k). 

THEOREM 4. f(k) B Nk, where N, = 2 and Nk = 2 ‘+Nkpl - 2. 
ProoJ: We define a regression CT on PNk- i using k bands of levels, in such 

a way that two elements in a single band can never belong to the same mono- 
tone chain. This requires that comparable elements in a single band have 
images that are incomparable or related in the opposite order. We specify the 
images by the ordered pair (initial element, size). Again we put cr(r, s) = (t + 
1, q) if a(r - 1, s) = (t, q), so it suffices to specify a( 1, s). As we develop the con- 
struction the reader may wish to refer to Fig. 1, where cr is described by labeling 
elements by their images. 

In this construction each band consists of sub-bands of consecutive levels. 
(In Figure 1 sub-bands are separated by dotted lines, bands by solid lines.) 
Within a sub-band the size (level) of every image is the same. The image level 
for two sub-bands of a single band is in reverse order to their positions. This 
insures that no monotone chain contains a point of each; their images are 
incomparable or in reverse order. Within a single sub-band, the distinct images 
are all incomparable, since they lie at the same level, and we make the col- 
lection of elements mapping to a single element an antichain by the same sort 
of construction used in the previous proof. Hence a monotone chain uses at 
most one element from each band. It remains to determine how many levels 
this construction accommodates. 

The lowest sub-band of each band is a single level consisting of fixed-points 
under 0. If this is level q, the jth sub-band of this band consists of elements 
mapping to level q + 1 -j. To make the sub-bands large, map the first element 
to the right-most possible element in its destination level. For example, if a 
sub-band starts at level q and maps to level r, put (T( 1, q) = (q - r + 1, r). The 
full sub-band is described by letting the images of (1, q), (1, q + l), . . . , (1,2q - r) 
be (q - r + 1, r), (q - r, r), . . ., (1, r). In particular, it has q - r + 1 levels. 

This enables us to compute the width of a band from its starting level 41. The 
first sub-band starts at level q1 and maps to level r I = 41. There are q1 sub- 
bands, each successive one mapping to a lower level. For the jth sub-band, 
r,=r,~l-l,andq,=q,~i+(q,~i-r,~i+l). Thusq,-r,+1=2(q,-i-r,-i+ 
1) + 1; i.e., the number of levels in the jth sub-band is one more than twice that 
in the previous sub-band. Since the first sub-band has 1 level, the jth has 2j - 1 
levels, and the full band has 2 ‘+ql - 2 - q1 levels. 

To show that the first k bands cover Nk - 1 levels, we need only show the 
first level of band k + 1 will be Nk. This is true for k = 1. Inductively, suppose 
the first level of band k is Nk- t . By the discussion above, band k has Nk- 1 
sub-bands and 2 ‘+N~- 1 - 2 - N k-l levels. Adding these to Nk-i puts the first 
level of band k + 1 at Nk. 0 
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The counting technique used in Section 2 can be applied to other families of 
posets in which every principle ideal is also a member of the family. We seek a 
weight function satisfying two properties. (1) The weights must be small enough 
to get bounds on the total weight of antichains (or unions of antichains) in 
{x : x > y> for any y E P. (2) The weights must be large enough so that the total 
weight grows ‘quickly enough’ with the size of the poset. As in Theorem 2, this 
will yield interlaced monotone k-chains for large enough members of the family. 
The first example is very similar to P,, , constructed so that each element covers 
m + 1 elements rather than 2. 

THEOREM 5. Suppose n = rm, and let P,, ,,, be the subposet of P,, induced 
by {XE P,, : m divides 1x1>. Fix m and let n (and r) grow. Zf 

H(r) > m[(rm - m + 1)k + r]l(rm + l), 

then any choice function on P,,, 111 has a constant k + 1 -chain. 
Proof: Give each element x the weight it received in P,,, i.e., 1/1x1. Then 

the antichains can be viewed as antichains in P,, and have the same weight 
bound. P,,, m has r levels; sum the weight in each to get total weight 

,$ (n-mi+ l)lmi=(n+ l)H(r)lm-r. 

There are (n - m -+ 1) minimal elements, so 

H(r)>m[(rm-m+ l)k+r]l(rm+ 1) 

guarantees a constant k + 1 -chain for any choice function on P,,, m. Note that 
H(r) grows and the required value does not. 0 

Similarly, the argument of Theorem 2 can be followed to force interlaced 
monotone k + 1 -chains in P,,, m when r is sufficiently large. 

There are other generalizations of P, worth considering, particularly higher- 
dimensional analogues. For example, P,, can be viewed as the top n levels of 
the Cartesian product of two n-chains. Let Pi be the top n levels of the Cartesian 

product of t + 1 n-chains. Then level i has 
( 1 

n -t + t elements (this is the 

number of nonnegative t-vectors with total sum n - i). For any element y E Pi, 
Ix: x > y) is a product of t + 1 chains of size at most n. The antichain weight 

in preimages can be bounded by 1 by choosing weights equal to 
r-llfr)-’ 

for elements in level i. An ad l&c pushing argument can be made for this as 
for P,, , but it also follows immediately from the fact that the product of t + 1 
chains is an LYM order (see [0] or [ 1 l] for definition and discussion). 

In particular, consider the total weight in Pi. This equals 
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=(n+2)2 2 * ~ - (n + 2) [HoI + 1) - II+ n, 
[=I i(i+ 1) 

which grows quadratically since 

converges. Unfortunately, the number of elements on level 1 is n- 1 
( 1 2 

, which 

also grows quadratically. Hence this simple form of the argument cannot be 
used to show that sufficiently large y1 will force arbitrarily long constant chains 
for choice functions on P,!f. It is possible that here the more accurate counting 
of weights or tighter bounds on the antichain weight in the elements above 
minimal elements far from the ‘center’ will suffice to show this. 

Other generalizations to consider include Cartesian products of t copies 
of P, and the inclusion ordering on unions of up to t integer intervals. The latter 
are very closely related to P,, . 2t The former include P, as a principle ideal, so 
large enough values of n force long monotone chains; the problem is to discover by 
how much n can be reduced in comparison to f(k) and g(k) to force this in 
the product of t copies of P,,. Finally, we note that this technique will give an 
upper bound on n such that any choice function on B, - (021) is constant on 
some k + 1 -chain, but it will not give the best-possible bound in Perry’s Theo- 
rem [4,7]. 
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